

FPGA beam loss monitor system for the SRF facility

By
Diana P. Perea
Benedict College

Supervisor: Jin-Yuan Wu
Fermi National Accelerator Laboratory
August 9, 2011.

Outline

- ✓ What is a beam loss monitor(BLM) system?
- ✓ Describe Helium Ionization beam loss monitor
- ✓ Recycling Integrator for the signal processing
- ✓ Field Programmable Gate Array (FPGA)-based Time-to-Digital Converter (TDC)
- ✓ Show a brief display of the entire BLM system
- ✓ Test of the FPGA-TDC

Beam loss monitor system

- The BLM systems are designed for measuring beam losses around an accelerator or storage ring.
- These systems give a useful beam diagnostics and machine protection from radiation damage.

He-Ionization Chamber Beam loss monitor

Electronics(Recycling Integrator)

- ❖Operation in air and high vacuum
- ❖Operates from 5K to 350K
- ❖Stainless steel vessel, 120cm³, filled with He-gas
- ❖ He-gas filling at 1.0- 1.5 bar pressure
- Sensitivity: 1.9 pA/(Rad/hr)
- Readout via current-to-frequency converter (1.9 Hz/(Rad/hr)) and

FPGA-TDC

❖ Pulses can be sent through long cables

Fill port

Recycling Integrator

It generates pulses from current signals

Ch 1 represents input current, Ch2 output pulses from the recycling integrator

Input current of 150nA

Input current of 300nA

FPGA-based TDC

- Field programmable gate array(FPGA) is a device that can be reconfigured after its fabrication.
- Quartus II as the design software.

- Is needed to measure time between pulses to increase resolution over standard digitalization.
- Time-to-Digital Converter(TDC) gives a time resolution of 1 ns.

Digitalization with the FPGA

Top View of the Cyclone III FPGA Starter Board

Cryogenic beam loss monitor system display

Objective

Increase the output from a single to multiple (8) channels in the FPGA-based TDC.

- Single channel design
- Schematics (New Blocks)

Quartus Schematic diagram functionality of the extension

Terasic Button 4 is the Access the SSRAM memory which writes Control switch to start and read the pulses from the chamber. Panel to the process read out text file Counters, A temporary clocks as 2 x Storage storage is input for blocks needed. each channel SINGLE CHANNEL TDC block, 2 Multiplexer 8 x storage Clock block Counters blocks(leading inputs =single line and falling edge)

RESULTS

Single Channel

FPGA readout from A0 beam line when a magnet was swiped twice.

Closest view of the first swipe of the magnet. Beam loss was seen at 1 Hz frequency.

RESULTS

Eight Channels

Digital

Pulse

CONCLUSION & FUTURE WORK

- From the results we can conclude that the objective is partially achieved due to missing of acceptable standard deviations from three of the eight channels.
- Find the exact problem in channels 3, 4, and 8.
- The final test for the extension will be reading output from the He-Ionization chamber.

Acknowledgments

- Jin-Yuan Wu,
 Supervisor
- Arden Warner, SRF Dept.
- Elmie Peoples & David Peterson, Mentors
- Dr. James Davenport

- Fermilab, Dianne Engram, Jamieson Olsen & the SIST Committee
- Particle Physics
 Division (PPD) 14th

 Floor staff
- Benedict College, Columbia, SC.

Any Questions?

